Confirming that a set is a Basis

Intuitive Way

- Definition: A basis B for V is an independent generation set of V.

$$
V=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in \mathcal{R}^{3}: v_{1}-v_{2}+2 v_{3}=0\right\} \quad \mathcal{C}=\left\{\begin{array}{l}
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\} \\
\text { Is } \mathrm{C} \text { a basis of } V ?
\end{array}\right.
$$

Independent? yes
Generation set? difficult

$$
\mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\} \text { generates } \mathrm{V}
$$

Another way

Find a basis for V

- Given a subspace V, assume that we already know that dim $\mathrm{V}=\mathrm{k}$. Suppose S is a subset of V with k vectors

If S is independent $\quad \square S$ is basis
If S is a generation set $\quad S$ is basis
$V=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in \mathcal{R}^{3}: v_{1}-v_{2}+2 v_{3}=0\right\} \mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$
Dim V = 2 (parametric representation)
Is C a basis of V ?
C is a subset of V with 2 vectors Independent? yes
C is a basis of V

Another way

Assume that $\operatorname{dim} \mathrm{V}=\mathrm{k}$. Suppose S is a subset of V with k vectors

If S is independent
S is basis
By the extension theorem, we can add more vector into S to form a basis.
However, S already have k vectors, so it is already a basis.

If S is a generation set
S is basis
By the reduction theorem, we can remove some vector from S to form a basis.
However, S already have k vectors, so it is already a basis.

Example

- Is B a basis of V ?

$$
V=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] \in \mathcal{R}^{4}: v_{1}+v_{2}+v_{4}=0\right\} \quad \underset{\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}}{\text { Independent set in V? yes }}
$$

$\operatorname{Dim} \mathrm{V}=$? $3 \square \mathrm{~B}$ is a basis of V.

Example

- Is B a basis of $V=$ Span S ?
B is a subset of V with 3 vectors

$$
\begin{aligned}
& \mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]\right\} \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right\} \\
& A=\left[\begin{array}{lccc}
1 & -1 & 3 & 1 \\
1 & 3 & 1 & 1 \\
1 & 1 & -1 & -1 \\
2 & -1 & 1 & -1
\end{array}\right] \longrightarrow R_{A}=\left[\begin{array}{lllc}
1 & 0 & 0 & -2 / 3 \\
0 & 1 & 0 & 1 / 3 \\
0 & 0 & 1 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] \operatorname{dim} A=3 \\
& B=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \longrightarrow R_{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { Independent }
\end{aligned}
$$

